570 research outputs found

    Defining Technology for Learning: Cognitive and Physical Tools of Inquiry

    Get PDF
    This essay explores definitions of technology and educational technology. The authors argue the following points: 1. Educational stakeholders, and the public at large, use the term technology as though it has a universally agreed upon definition. It does not, and how technology is defined matters. 2. For technology in schools to support student learning, it must to be defined in a way that describes technology as a tool for problem-solving. 3. Integration of technology, particularly when paired with teacher-centered practices, has the potential of reinforcing and heightening the negative consequences of a conception of learning that positions students as recipients of knowledge instead constructors of knowledge. Essay concludes with a call for leaders in the field of educational technology to provide guidance by adopting a definition that encapsulates the third point above

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae

    Get PDF
    Testate amoebae are increasingly used in ecological and palaeoecological studies of wetlands. To characterise the amoeba community a certain number of individuals need to be counted under the microscope. To date, most studies have aimed for 150 individuals, but that sample size is not based on adequate evidence. When testate amoeba concentrations are low, it can be difficult or impossible to reach this total. The impacts of lower count totals have never been seriously scrutinised. We investigated the impact of count size on number of taxa identified, quantitative inferences of environmental variables and the strength of the links between amoebae and environmental data in the context of predicting depth to water table. Low counts were simulated by random selection of individuals from four existing datasets. Results show progressively diminishing returns by all criteria as count size increases from low numbers to counts of 150. A higher count is required to identify all taxa than to adequately characterise the community for transfer function inference. We suggest that in most cases, it will be a more efficient use of time to count a greater number of samples to a lower count. While a count of 50 individuals may be sufficient for some samples from some sites we recommend that counts of 100 individuals should be sufficient for most samples. Counts need only be increased to 150 or more where the aim is to identify relatively minor, but still potentially ecologically relevant community changes. This approach will help reduce lack of replication and low resolution, which are common limitations in testate amoeba-based palaeoecological and ecological studies

    A systematic review of the psychometric properties of self-report research utilization measures used in healthcare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In healthcare, a gap exists between what is known from research and what is practiced. Understanding this gap depends upon our ability to robustly measure research utilization.</p> <p>Objectives</p> <p>The objectives of this systematic review were: to identify self-report measures of research utilization used in healthcare, and to assess the psychometric properties (acceptability, reliability, and validity) of these measures.</p> <p>Methods</p> <p>We conducted a systematic review of literature reporting use or development of self-report research utilization measures. Our search included: multiple databases, ancestry searches, and a hand search. Acceptability was assessed by examining time to complete the measure and missing data rates. Our approach to reliability and validity assessment followed that outlined in the <it>Standards for Educational and Psychological Testing</it>.</p> <p>Results</p> <p>Of 42,770 titles screened, 97 original studies (108 articles) were included in this review. The 97 studies reported on the use or development of 60 unique self-report research utilization measures. Seven of the measures were assessed in more than one study. Study samples consisted of healthcare providers (92 studies) and healthcare decision makers (5 studies). No studies reported data on acceptability of the measures. Reliability was reported in 32 (33%) of the studies, representing 13 of the 60 measures. Internal consistency (Cronbach's Alpha) reliability was reported in 31 studies; values exceeded 0.70 in 29 studies. Test-retest reliability was reported in 3 studies with Pearson's <it>r </it>coefficients > 0.80. No validity information was reported for 12 of the 60 measures. The remaining 48 measures were classified into a three-level validity hierarchy according to the number of validity sources reported in 50% or more of the studies using the measure. Level one measures (n = 6) reported evidence from any three (out of four possible) <it>Standards </it>validity sources (which, in the case of single item measures, was all applicable validity sources). Level two measures (n = 16) had evidence from any two validity sources, and level three measures (n = 26) from only one validity source.</p> <p>Conclusions</p> <p>This review reveals significant underdevelopment in the measurement of research utilization. Substantial methodological advances with respect to construct clarity, use of research utilization and related theory, use of measurement theory, and psychometric assessment are required. Also needed are improved reporting practices and the adoption of a more contemporary view of validity (<it>i.e.</it>, the <it>Standards</it>) in future research utilization measurement studies.</p

    Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search is presented for a right-handed W boson (WR) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or ΌΌ) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of WR production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses mN equal to half the WR mass mWR (mN = 0.2 TeV), mWR is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the WR mass to date

    Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at s \sqrt{\mathrm{s}} =13 TeV

    Get PDF

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at s√ = 13 TeV

    Get PDF
    A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B ) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B (t → Hu) &lt; 0.079 (0.11)% and B (t → Hc) &lt; 0.094 (0.086)%

    Observation of the Bc+_\mathrm{c}^+ Meson in Pb-Pb and pp Collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV and Measurement of its Nuclear Modification Factor

    Get PDF
    The Bc+_\mathrm{c}^+ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the Bc+_\mathrm{c}^+ meson in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV , via the Bc+_\mathrm{c}^+ → (J/ψ → ÎŒ+^+Ό−^−)ÎŒ+^+ΜΌ_ÎŒ decay. The Bc+_\mathrm{c}^+ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The Bc+_\mathrm{c}^+meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma

    Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at √s=13Te

    Get PDF
    A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13TeV at the CERN LHC, corresponding to an integrated luminosity of 137fb−1^{-1} collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325GeV for a massless neutralino, and a neutralino mass up to 700GeV for a top squark mass of 1150GeV. Top squarks with masses from 145 to 295GeV, for neutralino masses from 0 to 100GeV, with a mass difference between the top squark and the neutralino in a window of 30GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420GeV

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101  fb−1^{-1} of proton-proton collisions delivered by the LHC at s\sqrt{s} =13  TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at s\sqrt{s} =8  TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3  fb−1^{-1}, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models
    • 

    corecore